Spatial Error Model (SEM)¶
Maximum Likelihood Spatial Error Model (공간오차모형, SEM)을 수행하빈다.
Syntax
SpatialErrorModel (SimpleFeatureCollection inputFeatures, String dependentVariable, String explanatoryVariables, SpatialConcept spatialConcept, DistanceMethod distanceMethod, StandardizationMethod standardization, Double searchDistance) : SimpleFeatureCollection, SpatialErrorResult
Input Parameters
Identifier |
Description |
Type |
Default |
Required |
inputFeatures |
종속변수와 독립변수를 포함하고 있는 입력 레이어입니다. |
SimpleFeatureCollection |
✓ |
|
dependentVariable |
종속변수값을 가진 숫자 필드입니다. |
String |
✓ |
|
explanatoryVariables |
회귀 분석에 사용할 쉼표로 구분된 설명 변수 숫자 필드의 목록입니다. |
String |
✓ |
|
spatialDiagnotics |
Lagrange multiplier, Moran’s I 등 공간 진단을 포함할 지 여부를 설정합니다. |
Boolean |
✓ |
|
spatialConcept |
피처들 간에 공간 관계를 설정하는 방식을 선택합니다. |
SpatialConcept |
InverseDistance |
|
distanceMethod |
분석 대상 피처로부터 이웃 피처까지의 거리를 계산하는 방법을 설정합니다. |
DistanceMethod |
Euclidean |
|
standardization |
통계량 계산시 행 표준화 적용 여부를 설정합니다. |
StandardizationMethod |
None |
|
searchDistance |
역거리 혹은 고정 거리 옵션 선택 시 기준 값을 지정합니다. |
Double |
0.0 |
Process Outputs
Identifier |
Description |
Type |
Default |
Required |
resFeatures |
종속 변수 추정치와 잔차를 포함한 출력 레이어입니다. |
SimpleFeatureCollection |
||
report |
분석 결과입니다. |
SpatialErrorResult |
✓ |
Constraints
Output은 XML로 반환한다.
Examples
a1_2000 필드를 종속변수로, a2_2000, a3_2000, a4_2000 필드를 설명변수로 분석한 결과는 다음의 XML 포맷으로 반환됩니다.
<?xml version="1.0" encoding="UTF-8"?>
<SpatialErrorModel>
<ModelName>Maximum Likelihood Spatial Error</ModelName>
<Dataset>seoul_series</Dataset>
<DependentVariable>a1_2000</DependentVariable>
<NumberOfObservations>25</NumberOfObservations>
<NumberOfVariables>4</NumberOfVariables>
<DegreesOfFreedom>21</DegreesOfFreedom>
<MeanDependentVar>18229.716524000003</MeanDependentVar>
<SdDependentVar>5222.973372203831</SdDependentVar>
<LagCoefficient>-0.24851881360049768</LagCoefficient>
<RSquared>0.2518656668858821</RSquared>
<PseudoRSquared>0.25196101716592434</PseudoRSquared>
<SigmaSquareML>1.8812637542498086E7</SigmaSquareML>
<SeOfRegression>4337.353748830972</SeOfRegression>
<LogLikelihood>-245.02018916073624</LogLikelihood>
<AkaikeCriterion>498.0403783214725</AkaikeCriterion>
<SchwarzCriterion>502.9158816209453</SchwarzCriterion>
<Summary>
<Variable>
<Variable>CONSTANT</Variable>
<Coefficient>-88317.68976363928</Coefficient>
<StandardError>37270.805072442025</StandardError>
<ZStatistic>-2.369621197931709</ZStatistic>
<Probability>0.017806318045455766</Probability>
</Variable>
<Variable>
<Variable>a2_2000</Variable>
<Coefficient>995.8416093808737</Coefficient>
<StandardError>382.5707273790552</StandardError>
<ZStatistic>2.603026154675402</ZStatistic>
<Probability>0.009240490401231434</Probability>
</Variable>
<Variable>
<Variable>a3_2000</Variable>
<Coefficient>693.7113928797462</Coefficient>
<StandardError>621.213541267178</StandardError>
<ZStatistic>1.1167035919157267</ZStatistic>
<Probability>0.2641210995973676</Probability>
</Variable>
<Variable>
<Variable>a4_2000</Variable>
<Coefficient>136.8233103433231</Coefficient>
<StandardError>551.1711267400561</StandardError>
<ZStatistic>0.24824107016014255</ZStatistic>
<Probability>0.8039478914561922</Probability>
</Variable>
<Variable>
<Variable>lambda</Variable>
<Coefficient>-0.24851881360049768</Coefficient>
<StandardError>0.3002979071631366</StandardError>
<ZStatistic>-0.8275742443502613</ZStatistic>
<Probability>0.40791166731613593</Probability>
</Variable>
</Summary>
</SpatialErrorModel>