Spatial Lag Model (SLM)¶
Maximum Likelihood Spatial Lag Model (공간시차모형, SLM)을 수행합니다.
Syntax
SpatialLagModel (SimpleFeatureCollection inputFeatures, String dependentVariable, String explanatoryVariables, SpatialConcept spatialConcept, DistanceMethod distanceMethod, StandardizationMethod standardization, Double searchDistance) : SimpleFeatureCollection, SpatialLagResult
Input Parameters
Identifier |
Description |
Type |
Default |
Required |
inputFeatures |
종속변수와 독립변수를 포함하고 있는 입력 레이어입니다. |
SimpleFeatureCollection |
✓ |
|
dependentVariable |
종속변수값을 가진 숫자 필드입니다. |
String |
✓ |
|
explanatoryVariables |
회귀 분석에 사용할 쉼표로 구분된 설명 변수 숫자 필드의 목록입니다. |
String |
✓ |
|
spatialDiagnotics |
Lagrange multiplier, Moran’s I 등 공간 진단을 포함할 지 여부를 설정합니다. |
Boolean |
✓ |
|
spatialConcept |
피처들 간에 공간 관계를 설정하는 방식을 선택합니다. |
SpatialConcept |
InverseDistance |
|
distanceMethod |
분석 대상 피처로부터 이웃 피처까지의 거리를 계산하는 방법을 설정합니다. |
DistanceMethod |
Euclidean |
|
standardization |
통계량 계산시 행 표준화 적용 여부를 설정합니다. |
StandardizationMethod |
None |
|
searchDistance |
역거리 혹은 고정 거리 옵션 선택 시 기준 값을 지정합니다. |
Double |
0.0 |
Process Outputs
Identifier |
Description |
Type |
Default |
Required |
resFeatures |
종속 변수 추정치와 잔차를 포함한 출력 레이어입니다. |
SimpleFeatureCollection |
||
report |
분석 결과입니다. |
SpatialLagResult |
✓ |
Constraints
Output은 XML로 반환한다.
Examples
a1_2000 필드를 종속변수로, a2_2000, a3_2000, a4_2000 필드를 설명변수로 분석한 결과는 다음의 XML 포맷으로 반환됩니다.
<?xml version="1.0" encoding="UTF-8"?>
<SpatialLagModel>
<ModelName>Maximum Likelihood Spatial Lag</ModelName>
<Dataset>seoul_series</Dataset>
<DependentVariable>a1_2000</DependentVariable>
<NumberOfObservations>25</NumberOfObservations>
<NumberOfVariables>5</NumberOfVariables>
<DegreesOfFreedom>20</DegreesOfFreedom>
<MeanDependentVar>18229.716524000003</MeanDependentVar>
<SdDependentVar>5222.973372203831</SdDependentVar>
<LagCoefficient>-0.22828542473968091</LagCoefficient>
<RSquared>0.2761455213123636</RSquared>
<PseudoRSquared>0.27640866645133527</PseudoRSquared>
<SpatialPseudoRSquared>0.24256289672449238</SpatialPseudoRSquared>
<SigmaSquareML>1.895649856469702E7</SigmaSquareML>
<SeOfRegression>4353.906127226105</SeOfRegression>
<LogLikelihood>-245.08902967323908</LogLikelihood>
<AkaikeCriterion>500.17805934647816</AkaikeCriterion>
<SchwarzCriterion>506.27243847081917</SchwarzCriterion>
<Summary>
<Variable>
<Variable>CONSTANT</Variable>
<Coefficient>-95376.43702193913</Coefficient>
<StandardError>41547.093017760526</StandardError>
<ZStatistic>-2.2956223912264493</ZStatistic>
<Probability>0.02169748136498197</Probability>
</Variable>
<Variable>
<Variable>a2_2000</Variable>
<Coefficient>1109.0234412138893</Coefficient>
<StandardError>433.37762273421095</StandardError>
<ZStatistic>2.559023316010134</ZStatistic>
<Probability>0.010496670100781556</Probability>
</Variable>
<Variable>
<Variable>a3_2000</Variable>
<Coefficient>689.0420222891909</Coefficient>
<StandardError>620.0027530256691</StandardError>
<ZStatistic>1.1113531656538684</ZStatistic>
<Probability>0.2664163810038307</Probability>
</Variable>
<Variable>
<Variable>a4_2000</Variable>
<Coefficient>62.425662528753676</Coefficient>
<StandardError>519.9203359561636</StandardError>
<ZStatistic>0.12006774540555191</ZStatistic>
<Probability>0.9044294829669831</Probability>
</Variable>
<Variable>
<Variable>W_a1_2000</Variable>
<Coefficient>-0.22828542473968091</Coefficient>
<StandardError>0.2815172692688138</StandardError>
<ZStatistic>-0.8109109090629067</ZStatistic>
<Probability>0.4174168425394321</Probability>
</Variable>
</Summary>
</SpatialLagModel>